libstdc++
bitmap_allocator.h
Go to the documentation of this file.
1 // Bitmap Allocator. -*- C++ -*-
2 
3 // Copyright (C) 2004-2023 Free Software Foundation, Inc.
4 //
5 // This file is part of the GNU ISO C++ Library. This library is free
6 // software; you can redistribute it and/or modify it under the
7 // terms of the GNU General Public License as published by the
8 // Free Software Foundation; either version 3, or (at your option)
9 // any later version.
10 
11 // This library is distributed in the hope that it will be useful,
12 // but WITHOUT ANY WARRANTY; without even the implied warranty of
13 // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 // GNU General Public License for more details.
15 
16 // Under Section 7 of GPL version 3, you are granted additional
17 // permissions described in the GCC Runtime Library Exception, version
18 // 3.1, as published by the Free Software Foundation.
19 
20 // You should have received a copy of the GNU General Public License and
21 // a copy of the GCC Runtime Library Exception along with this program;
22 // see the files COPYING3 and COPYING.RUNTIME respectively. If not, see
23 // <http://www.gnu.org/licenses/>.
24 
25 /** @file ext/bitmap_allocator.h
26  * This file is a GNU extension to the Standard C++ Library.
27  */
28 
29 #ifndef _BITMAP_ALLOCATOR_H
30 #define _BITMAP_ALLOCATOR_H 1
31 
32 #include <bits/requires_hosted.h> // GNU extensions are currently omitted
33 
34 #include <utility> // For std::pair.
35 #include <bits/functexcept.h> // For __throw_bad_alloc().
36 #include <bits/stl_function.h> // For greater_equal, and less_equal.
37 #include <new> // For operator new.
38 #include <debug/debug.h> // _GLIBCXX_DEBUG_ASSERT
39 #include <ext/concurrence.h>
40 #include <bits/move.h>
41 
42 /** @brief The constant in the expression below is the alignment
43  * required in bytes.
44  */
45 #define _BALLOC_ALIGN_BYTES 8
46 
47 namespace __gnu_cxx _GLIBCXX_VISIBILITY(default)
48 {
49 _GLIBCXX_BEGIN_NAMESPACE_VERSION
50 
51  namespace __detail
52  {
53  /** @class __mini_vector bitmap_allocator.h bitmap_allocator.h
54  *
55  * @brief __mini_vector<> is a stripped down version of the
56  * full-fledged std::vector<>.
57  *
58  * It is to be used only for built-in types or PODs. Notable
59  * differences are:
60  *
61  * 1. Not all accessor functions are present.
62  * 2. Used ONLY for PODs.
63  * 3. No Allocator template argument. Uses ::operator new() to get
64  * memory, and ::operator delete() to free it.
65  * Caveat: The dtor does NOT free the memory allocated, so this a
66  * memory-leaking vector!
67  */
68  template<typename _Tp>
70  {
72  __mini_vector& operator=(const __mini_vector&);
73 
74  public:
75  typedef _Tp value_type;
76  typedef _Tp* pointer;
77  typedef _Tp& reference;
78  typedef const _Tp& const_reference;
79  typedef std::size_t size_type;
80  typedef std::ptrdiff_t difference_type;
81  typedef pointer iterator;
82 
83  private:
84  pointer _M_start;
85  pointer _M_finish;
86  pointer _M_end_of_storage;
87 
88  size_type
89  _M_space_left() const throw()
90  { return _M_end_of_storage - _M_finish; }
91 
92  _GLIBCXX_NODISCARD pointer
93  allocate(size_type __n)
94  { return static_cast<pointer>(::operator new(__n * sizeof(_Tp))); }
95 
96  void
97  deallocate(pointer __p, size_type)
98  { ::operator delete(__p); }
99 
100  public:
101  // Members used: size(), push_back(), pop_back(),
102  // insert(iterator, const_reference), erase(iterator),
103  // begin(), end(), back(), operator[].
104 
105  __mini_vector()
106  : _M_start(0), _M_finish(0), _M_end_of_storage(0) { }
107 
108  size_type
109  size() const throw()
110  { return _M_finish - _M_start; }
111 
112  iterator
113  begin() const throw()
114  { return this->_M_start; }
115 
116  iterator
117  end() const throw()
118  { return this->_M_finish; }
119 
120  reference
121  back() const throw()
122  { return *(this->end() - 1); }
123 
124  reference
125  operator[](const size_type __pos) const throw()
126  { return this->_M_start[__pos]; }
127 
128  void
129  insert(iterator __pos, const_reference __x);
130 
131  void
132  push_back(const_reference __x)
133  {
134  if (this->_M_space_left())
135  {
136  *this->end() = __x;
137  ++this->_M_finish;
138  }
139  else
140  this->insert(this->end(), __x);
141  }
142 
143  void
144  pop_back() throw()
145  { --this->_M_finish; }
146 
147  void
148  erase(iterator __pos) throw();
149 
150  void
151  clear() throw()
152  { this->_M_finish = this->_M_start; }
153  };
154 
155  // Out of line function definitions.
156  template<typename _Tp>
158  insert(iterator __pos, const_reference __x)
159  {
160  if (this->_M_space_left())
161  {
162  size_type __to_move = this->_M_finish - __pos;
163  iterator __dest = this->end();
164  iterator __src = this->end() - 1;
165 
166  ++this->_M_finish;
167  while (__to_move)
168  {
169  *__dest = *__src;
170  --__dest; --__src; --__to_move;
171  }
172  *__pos = __x;
173  }
174  else
175  {
176  size_type __new_size = this->size() ? this->size() * 2 : 1;
177  iterator __new_start = this->allocate(__new_size);
178  iterator __first = this->begin();
179  iterator __start = __new_start;
180  while (__first != __pos)
181  {
182  *__start = *__first;
183  ++__start; ++__first;
184  }
185  *__start = __x;
186  ++__start;
187  while (__first != this->end())
188  {
189  *__start = *__first;
190  ++__start; ++__first;
191  }
192  if (this->_M_start)
193  this->deallocate(this->_M_start, this->size());
194 
195  this->_M_start = __new_start;
196  this->_M_finish = __start;
197  this->_M_end_of_storage = this->_M_start + __new_size;
198  }
199  }
200 
201  template<typename _Tp>
202  void __mini_vector<_Tp>::
203  erase(iterator __pos) throw()
204  {
205  while (__pos + 1 != this->end())
206  {
207  *__pos = __pos[1];
208  ++__pos;
209  }
210  --this->_M_finish;
211  }
212 
213 
214  template<typename _Tp>
215  struct __mv_iter_traits
216  {
217  typedef typename _Tp::value_type value_type;
218  typedef typename _Tp::difference_type difference_type;
219  };
220 
221  template<typename _Tp>
222  struct __mv_iter_traits<_Tp*>
223  {
224  typedef _Tp value_type;
225  typedef std::ptrdiff_t difference_type;
226  };
227 
228  enum
229  {
230  bits_per_byte = 8,
231  bits_per_block = sizeof(std::size_t) * std::size_t(bits_per_byte)
232  };
233 
234  template<typename _ForwardIterator, typename _Tp, typename _Compare>
235  _ForwardIterator
236  __lower_bound(_ForwardIterator __first, _ForwardIterator __last,
237  const _Tp& __val, _Compare __comp)
238  {
239  typedef typename __mv_iter_traits<_ForwardIterator>::difference_type
240  _DistanceType;
241 
242  _DistanceType __len = __last - __first;
243  _DistanceType __half;
244  _ForwardIterator __middle;
245 
246  while (__len > 0)
247  {
248  __half = __len >> 1;
249  __middle = __first;
250  __middle += __half;
251  if (__comp(*__middle, __val))
252  {
253  __first = __middle;
254  ++__first;
255  __len = __len - __half - 1;
256  }
257  else
258  __len = __half;
259  }
260  return __first;
261  }
262 
263  /** @brief The number of Blocks pointed to by the address pair
264  * passed to the function.
265  */
266  template<typename _AddrPair>
267  inline std::size_t
268  __num_blocks(_AddrPair __ap)
269  { return (__ap.second - __ap.first) + 1; }
270 
271  /** @brief The number of Bit-maps pointed to by the address pair
272  * passed to the function.
273  */
274  template<typename _AddrPair>
275  inline std::size_t
276  __num_bitmaps(_AddrPair __ap)
277  { return __num_blocks(__ap) / std::size_t(bits_per_block); }
278 
279  // _Tp should be a pointer type.
280  template<typename _Tp>
281  class _Inclusive_between
282  {
283  typedef _Tp pointer;
284  pointer _M_ptr_value;
285  typedef typename std::pair<_Tp, _Tp> _Block_pair;
286 
287  public:
288  _Inclusive_between(pointer __ptr) : _M_ptr_value(__ptr)
289  { }
290 
291  bool
292  operator()(_Block_pair __bp) const throw()
293  {
294  if (std::less_equal<pointer>()(_M_ptr_value, __bp.second)
295  && std::greater_equal<pointer>()(_M_ptr_value, __bp.first))
296  return true;
297  else
298  return false;
299  }
300  };
301 
302  // Used to pass a Functor to functions by reference.
303  template<typename _Functor>
304  class _Functor_Ref
305  {
306  _Functor& _M_fref;
307 
308  public:
309  typedef typename _Functor::argument_type argument_type;
310  typedef typename _Functor::result_type result_type;
311 
312  _Functor_Ref(_Functor& __fref) : _M_fref(__fref)
313  { }
314 
315  result_type
316  operator()(argument_type __arg)
317  { return _M_fref(__arg); }
318  };
319 
320  /** @class _Ffit_finder bitmap_allocator.h bitmap_allocator.h
321  *
322  * @brief The class which acts as a predicate for applying the
323  * first-fit memory allocation policy for the bitmap allocator.
324  */
325  // _Tp should be a pointer type, and _Alloc is the Allocator for
326  // the vector.
327  template<typename _Tp>
329  {
332  typedef typename _BPVector::difference_type _Counter_type;
333 
334  std::size_t* _M_pbitmap;
335  _Counter_type _M_data_offset;
336 
337  public:
338  typedef bool result_type;
339  typedef _Block_pair argument_type;
340 
341  _Ffit_finder() : _M_pbitmap(0), _M_data_offset(0)
342  { }
343 
344  bool
345  operator()(_Block_pair __bp) throw()
346  {
347  using std::size_t;
348  // Set the _rover to the last physical location bitmap,
349  // which is the bitmap which belongs to the first free
350  // block. Thus, the bitmaps are in exact reverse order of
351  // the actual memory layout. So, we count down the bitmaps,
352  // which is the same as moving up the memory.
353 
354  // If the used count stored at the start of the Bit Map headers
355  // is equal to the number of Objects that the current Block can
356  // store, then there is definitely no space for another single
357  // object, so just return false.
358  _Counter_type __diff = __detail::__num_bitmaps(__bp);
359 
360  if (*(reinterpret_cast<size_t*>
361  (__bp.first) - (__diff + 1)) == __detail::__num_blocks(__bp))
362  return false;
363 
364  size_t* __rover = reinterpret_cast<size_t*>(__bp.first) - 1;
365 
366  for (_Counter_type __i = 0; __i < __diff; ++__i)
367  {
368  _M_data_offset = __i;
369  if (*__rover)
370  {
371  _M_pbitmap = __rover;
372  return true;
373  }
374  --__rover;
375  }
376  return false;
377  }
378 
379  std::size_t*
380  _M_get() const throw()
381  { return _M_pbitmap; }
382 
383  _Counter_type
384  _M_offset() const throw()
385  { return _M_data_offset * std::size_t(bits_per_block); }
386  };
387 
388  /** @class _Bitmap_counter bitmap_allocator.h bitmap_allocator.h
389  *
390  * @brief The bitmap counter which acts as the bitmap
391  * manipulator, and manages the bit-manipulation functions and
392  * the searching and identification functions on the bit-map.
393  */
394  // _Tp should be a pointer type.
395  template<typename _Tp>
397  {
398  typedef typename
400  typedef typename _BPVector::size_type _Index_type;
401  typedef _Tp pointer;
402 
403  _BPVector& _M_vbp;
404  std::size_t* _M_curr_bmap;
405  std::size_t* _M_last_bmap_in_block;
406  _Index_type _M_curr_index;
407 
408  public:
409  // Use the 2nd parameter with care. Make sure that such an
410  // entry exists in the vector before passing that particular
411  // index to this ctor.
412  _Bitmap_counter(_BPVector& Rvbp, long __index = -1) : _M_vbp(Rvbp)
413  { this->_M_reset(__index); }
414 
415  void
416  _M_reset(long __index = -1) throw()
417  {
418  if (__index == -1)
419  {
420  _M_curr_bmap = 0;
421  _M_curr_index = static_cast<_Index_type>(-1);
422  return;
423  }
424 
425  _M_curr_index = __index;
426  _M_curr_bmap = reinterpret_cast<std::size_t*>
427  (_M_vbp[_M_curr_index].first) - 1;
428 
429  _GLIBCXX_DEBUG_ASSERT(__index <= (long)_M_vbp.size() - 1);
430 
431  _M_last_bmap_in_block = _M_curr_bmap
432  - ((_M_vbp[_M_curr_index].second
433  - _M_vbp[_M_curr_index].first + 1)
434  / std::size_t(bits_per_block) - 1);
435  }
436 
437  // Dangerous Function! Use with extreme care. Pass to this
438  // function ONLY those values that are known to be correct,
439  // otherwise this will mess up big time.
440  void
441  _M_set_internal_bitmap(std::size_t* __new_internal_marker) throw()
442  { _M_curr_bmap = __new_internal_marker; }
443 
444  bool
445  _M_finished() const throw()
446  { return(_M_curr_bmap == 0); }
447 
449  operator++() throw()
450  {
451  if (_M_curr_bmap == _M_last_bmap_in_block)
452  {
453  if (++_M_curr_index == _M_vbp.size())
454  _M_curr_bmap = 0;
455  else
456  this->_M_reset(_M_curr_index);
457  }
458  else
459  --_M_curr_bmap;
460  return *this;
461  }
462 
463  std::size_t*
464  _M_get() const throw()
465  { return _M_curr_bmap; }
466 
467  pointer
468  _M_base() const throw()
469  { return _M_vbp[_M_curr_index].first; }
470 
471  _Index_type
472  _M_offset() const throw()
473  {
474  return std::size_t(bits_per_block)
475  * ((reinterpret_cast<std::size_t*>(this->_M_base())
476  - _M_curr_bmap) - 1);
477  }
478 
479  _Index_type
480  _M_where() const throw()
481  { return _M_curr_index; }
482  };
483 
484  /** @brief Mark a memory address as allocated by re-setting the
485  * corresponding bit in the bit-map.
486  */
487  inline void
488  __bit_allocate(std::size_t* __pbmap, std::size_t __pos) throw()
489  {
490  std::size_t __mask = 1 << __pos;
491  __mask = ~__mask;
492  *__pbmap &= __mask;
493  }
494 
495  /** @brief Mark a memory address as free by setting the
496  * corresponding bit in the bit-map.
497  */
498  inline void
499  __bit_free(std::size_t* __pbmap, std::size_t __pos) throw()
500  {
501  std::size_t __mask = 1 << __pos;
502  *__pbmap |= __mask;
503  }
504  } // namespace __detail
505 
506  /** @brief Generic Version of the bsf instruction.
507  */
508  inline std::size_t
509  _Bit_scan_forward(std::size_t __num)
510  { return static_cast<std::size_t>(__builtin_ctzl(__num)); }
511 
512  /** @class free_list bitmap_allocator.h bitmap_allocator.h
513  *
514  * @brief The free list class for managing chunks of memory to be
515  * given to and returned by the bitmap_allocator.
516  */
517  class free_list
518  {
519  public:
520  typedef std::size_t* value_type;
522  typedef vector_type::iterator iterator;
523  typedef __mutex __mutex_type;
524 
525  private:
526  struct _LT_pointer_compare
527  {
528  bool
529  operator()(const std::size_t* __pui,
530  const std::size_t __cui) const throw()
531  { return *__pui < __cui; }
532  };
533 
534 #if defined __GTHREADS
535  __mutex_type&
536  _M_get_mutex()
537  {
538  static __mutex_type _S_mutex;
539  return _S_mutex;
540  }
541 #endif
542 
543  vector_type&
544  _M_get_free_list()
545  {
546  static vector_type _S_free_list;
547  return _S_free_list;
548  }
549 
550  /** @brief Performs validation of memory based on their size.
551  *
552  * @param __addr The pointer to the memory block to be
553  * validated.
554  *
555  * Validates the memory block passed to this function and
556  * appropriately performs the action of managing the free list of
557  * blocks by adding this block to the free list or deleting this
558  * or larger blocks from the free list.
559  */
560  void
561  _M_validate(std::size_t* __addr) throw()
562  {
563  vector_type& __free_list = _M_get_free_list();
564  const vector_type::size_type __max_size = 64;
565  if (__free_list.size() >= __max_size)
566  {
567  // Ok, the threshold value has been reached. We determine
568  // which block to remove from the list of free blocks.
569  if (*__addr >= *__free_list.back())
570  {
571  // Ok, the new block is greater than or equal to the
572  // last block in the list of free blocks. We just free
573  // the new block.
574  ::operator delete(static_cast<void*>(__addr));
575  return;
576  }
577  else
578  {
579  // Deallocate the last block in the list of free lists,
580  // and insert the new one in its correct position.
581  ::operator delete(static_cast<void*>(__free_list.back()));
582  __free_list.pop_back();
583  }
584  }
585 
586  // Just add the block to the list of free lists unconditionally.
587  iterator __temp = __detail::__lower_bound
588  (__free_list.begin(), __free_list.end(),
589  *__addr, _LT_pointer_compare());
590 
591  // We may insert the new free list before _temp;
592  __free_list.insert(__temp, __addr);
593  }
594 
595  /** @brief Decides whether the wastage of memory is acceptable for
596  * the current memory request and returns accordingly.
597  *
598  * @param __block_size The size of the block available in the free
599  * list.
600  *
601  * @param __required_size The required size of the memory block.
602  *
603  * @return true if the wastage incurred is acceptable, else returns
604  * false.
605  */
606  bool
607  _M_should_i_give(std::size_t __block_size,
608  std::size_t __required_size) throw()
609  {
610  const std::size_t __max_wastage_percentage = 36;
611  if (__block_size >= __required_size &&
612  (((__block_size - __required_size) * 100 / __block_size)
613  < __max_wastage_percentage))
614  return true;
615  else
616  return false;
617  }
618 
619  public:
620  /** @brief This function returns the block of memory to the
621  * internal free list.
622  *
623  * @param __addr The pointer to the memory block that was given
624  * by a call to the _M_get function.
625  */
626  inline void
627  _M_insert(std::size_t* __addr) throw()
628  {
629 #if defined __GTHREADS
630  __scoped_lock __bfl_lock(_M_get_mutex());
631 #endif
632  // Call _M_validate to decide what should be done with
633  // this particular free list.
634  this->_M_validate(reinterpret_cast<std::size_t*>(__addr) - 1);
635  // See discussion as to why this is 1!
636  }
637 
638  /** @brief This function gets a block of memory of the specified
639  * size from the free list.
640  *
641  * @param __sz The size in bytes of the memory required.
642  *
643  * @return A pointer to the new memory block of size at least
644  * equal to that requested.
645  */
646  std::size_t*
647  _M_get(std::size_t __sz) _GLIBCXX_THROW(std::bad_alloc);
648 
649  /** @brief This function just clears the internal Free List, and
650  * gives back all the memory to the OS.
651  */
652  void
653  _M_clear();
654  };
655 
656 
657  // Forward declare the class.
658  template<typename _Tp>
660 
661  // Specialize for void:
662  template<>
663  class bitmap_allocator<void>
664  {
665  public:
666  typedef void* pointer;
667  typedef const void* const_pointer;
668 
669  // Reference-to-void members are impossible.
670  typedef void value_type;
671  template<typename _Tp1>
672  struct rebind
673  {
674  typedef bitmap_allocator<_Tp1> other;
675  };
676  };
677 
678  /**
679  * @brief Bitmap Allocator, primary template.
680  * @ingroup allocators
681  */
682  template<typename _Tp>
683  class bitmap_allocator : private free_list
684  {
685  public:
686  typedef std::size_t size_type;
687  typedef std::ptrdiff_t difference_type;
688  typedef _Tp* pointer;
689  typedef const _Tp* const_pointer;
690  typedef _Tp& reference;
691  typedef const _Tp& const_reference;
692  typedef _Tp value_type;
693  typedef free_list::__mutex_type __mutex_type;
694 
695  template<typename _Tp1>
696  struct rebind
697  {
698  typedef bitmap_allocator<_Tp1> other;
699  };
700 
701 #if __cplusplus >= 201103L
702  // _GLIBCXX_RESOLVE_LIB_DEFECTS
703  // 2103. propagate_on_container_move_assignment
704  typedef std::true_type propagate_on_container_move_assignment;
705 #endif
706 
707  private:
708  template<std::size_t _BSize, std::size_t _AlignSize>
709  struct aligned_size
710  {
711  enum
712  {
713  modulus = _BSize % _AlignSize,
714  value = _BSize + (modulus ? _AlignSize - (modulus) : 0)
715  };
716  };
717 
718  struct _Alloc_block
719  {
720  char __M_unused[aligned_size<sizeof(value_type),
721  _BALLOC_ALIGN_BYTES>::value];
722  };
723 
724 
725  typedef typename std::pair<_Alloc_block*, _Alloc_block*> _Block_pair;
726 
727  typedef typename __detail::__mini_vector<_Block_pair> _BPVector;
728  typedef typename _BPVector::iterator _BPiter;
729 
730  template<typename _Predicate>
731  static _BPiter
732  _S_find(_Predicate __p)
733  {
734  _BPiter __first = _S_mem_blocks.begin();
735  while (__first != _S_mem_blocks.end() && !__p(*__first))
736  ++__first;
737  return __first;
738  }
739 
740 #if defined _GLIBCXX_DEBUG
741  // Complexity: O(lg(N)). Where, N is the number of block of size
742  // sizeof(value_type).
743  void
744  _S_check_for_free_blocks() throw()
745  {
746  typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
747  _BPiter __bpi = _S_find(_FFF());
748 
749  _GLIBCXX_DEBUG_ASSERT(__bpi == _S_mem_blocks.end());
750  }
751 #endif
752 
753  /** @brief Responsible for exponentially growing the internal
754  * memory pool.
755  *
756  * @throw std::bad_alloc. If memory cannot be allocated.
757  *
758  * Complexity: O(1), but internally depends upon the
759  * complexity of the function free_list::_M_get. The part where
760  * the bitmap headers are written has complexity: O(X),where X
761  * is the number of blocks of size sizeof(value_type) within
762  * the newly acquired block. Having a tight bound.
763  */
764  void
765  _S_refill_pool() _GLIBCXX_THROW(std::bad_alloc)
766  {
767  using std::size_t;
768 #if defined _GLIBCXX_DEBUG
769  _S_check_for_free_blocks();
770 #endif
771 
772  const size_t __num_bitmaps = (_S_block_size
773  / size_t(__detail::bits_per_block));
774  const size_t __size_to_allocate = sizeof(size_t)
775  + _S_block_size * sizeof(_Alloc_block)
776  + __num_bitmaps * sizeof(size_t);
777 
778  size_t* __temp =
779  reinterpret_cast<size_t*>(this->_M_get(__size_to_allocate));
780  *__temp = 0;
781  ++__temp;
782 
783  // The Header information goes at the Beginning of the Block.
784  _Block_pair __bp =
785  std::make_pair(reinterpret_cast<_Alloc_block*>
786  (__temp + __num_bitmaps),
787  reinterpret_cast<_Alloc_block*>
788  (__temp + __num_bitmaps)
789  + _S_block_size - 1);
790 
791  // Fill the Vector with this information.
792  _S_mem_blocks.push_back(__bp);
793 
794  for (size_t __i = 0; __i < __num_bitmaps; ++__i)
795  __temp[__i] = ~static_cast<size_t>(0); // 1 Indicates all Free.
796 
797  _S_block_size *= 2;
798  }
799 
800  static _BPVector _S_mem_blocks;
801  static std::size_t _S_block_size;
802  static __detail::_Bitmap_counter<_Alloc_block*> _S_last_request;
803  static typename _BPVector::size_type _S_last_dealloc_index;
804 #if defined __GTHREADS
805  static __mutex_type _S_mut;
806 #endif
807 
808  public:
809 
810  /** @brief Allocates memory for a single object of size
811  * sizeof(_Tp).
812  *
813  * @throw std::bad_alloc. If memory cannot be allocated.
814  *
815  * Complexity: Worst case complexity is O(N), but that
816  * is hardly ever hit. If and when this particular case is
817  * encountered, the next few cases are guaranteed to have a
818  * worst case complexity of O(1)! That's why this function
819  * performs very well on average. You can consider this
820  * function to have a complexity referred to commonly as:
821  * Amortized Constant time.
822  */
823  pointer
824  _M_allocate_single_object() _GLIBCXX_THROW(std::bad_alloc)
825  {
826  using std::size_t;
827 #if defined __GTHREADS
828  __scoped_lock __bit_lock(_S_mut);
829 #endif
830 
831  // The algorithm is something like this: The last_request
832  // variable points to the last accessed Bit Map. When such a
833  // condition occurs, we try to find a free block in the
834  // current bitmap, or succeeding bitmaps until the last bitmap
835  // is reached. If no free block turns up, we resort to First
836  // Fit method.
837 
838  // WARNING: Do not re-order the condition in the while
839  // statement below, because it relies on C++'s short-circuit
840  // evaluation. The return from _S_last_request->_M_get() will
841  // NOT be dereference able if _S_last_request->_M_finished()
842  // returns true. This would inevitably lead to a NULL pointer
843  // dereference if tinkered with.
844  while (_S_last_request._M_finished() == false
845  && (*(_S_last_request._M_get()) == 0))
846  _S_last_request.operator++();
847 
848  if (__builtin_expect(_S_last_request._M_finished() == true, false))
849  {
850  // Fall Back to First Fit algorithm.
851  typedef typename __detail::_Ffit_finder<_Alloc_block*> _FFF;
852  _FFF __fff;
853  _BPiter __bpi = _S_find(__detail::_Functor_Ref<_FFF>(__fff));
854 
855  if (__bpi != _S_mem_blocks.end())
856  {
857  // Search was successful. Ok, now mark the first bit from
858  // the right as 0, meaning Allocated. This bit is obtained
859  // by calling _M_get() on __fff.
860  size_t __nz_bit = _Bit_scan_forward(*__fff._M_get());
861  __detail::__bit_allocate(__fff._M_get(), __nz_bit);
862 
863  _S_last_request._M_reset(__bpi - _S_mem_blocks.begin());
864 
865  // Now, get the address of the bit we marked as allocated.
866  pointer __ret = reinterpret_cast<pointer>
867  (__bpi->first + __fff._M_offset() + __nz_bit);
868  size_t* __puse_count =
869  reinterpret_cast<size_t*>
870  (__bpi->first) - (__detail::__num_bitmaps(*__bpi) + 1);
871 
872  ++(*__puse_count);
873  return __ret;
874  }
875  else
876  {
877  // Search was unsuccessful. We Add more memory to the
878  // pool by calling _S_refill_pool().
879  _S_refill_pool();
880 
881  // _M_Reset the _S_last_request structure to the first
882  // free block's bit map.
883  _S_last_request._M_reset(_S_mem_blocks.size() - 1);
884 
885  // Now, mark that bit as allocated.
886  }
887  }
888 
889  // _S_last_request holds a pointer to a valid bit map, that
890  // points to a free block in memory.
891  size_t __nz_bit = _Bit_scan_forward(*_S_last_request._M_get());
892  __detail::__bit_allocate(_S_last_request._M_get(), __nz_bit);
893 
894  pointer __ret = reinterpret_cast<pointer>
895  (_S_last_request._M_base() + _S_last_request._M_offset() + __nz_bit);
896 
897  size_t* __puse_count = reinterpret_cast<size_t*>
898  (_S_mem_blocks[_S_last_request._M_where()].first)
899  - (__detail::
900  __num_bitmaps(_S_mem_blocks[_S_last_request._M_where()]) + 1);
901 
902  ++(*__puse_count);
903  return __ret;
904  }
905 
906  /** @brief Deallocates memory that belongs to a single object of
907  * size sizeof(_Tp).
908  *
909  * Complexity: O(lg(N)), but the worst case is not hit
910  * often! This is because containers usually deallocate memory
911  * close to each other and this case is handled in O(1) time by
912  * the deallocate function.
913  */
914  void
915  _M_deallocate_single_object(pointer __p) throw()
916  {
917  using std::size_t;
918 #if defined __GTHREADS
919  __scoped_lock __bit_lock(_S_mut);
920 #endif
921  _Alloc_block* __real_p = reinterpret_cast<_Alloc_block*>(__p);
922 
923  typedef typename _BPVector::iterator _Iterator;
924  typedef typename _BPVector::difference_type _Difference_type;
925 
926  _Difference_type __diff;
927  long __displacement;
928 
929  _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
930 
931  __detail::_Inclusive_between<_Alloc_block*> __ibt(__real_p);
932  if (__ibt(_S_mem_blocks[_S_last_dealloc_index]))
933  {
934  _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index
935  <= _S_mem_blocks.size() - 1);
936 
937  // Initial Assumption was correct!
938  __diff = _S_last_dealloc_index;
939  __displacement = __real_p - _S_mem_blocks[__diff].first;
940  }
941  else
942  {
943  _Iterator _iter = _S_find(__ibt);
944 
945  _GLIBCXX_DEBUG_ASSERT(_iter != _S_mem_blocks.end());
946 
947  __diff = _iter - _S_mem_blocks.begin();
948  __displacement = __real_p - _S_mem_blocks[__diff].first;
949  _S_last_dealloc_index = __diff;
950  }
951 
952  // Get the position of the iterator that has been found.
953  const size_t __rotate = (__displacement
954  % size_t(__detail::bits_per_block));
955  size_t* __bitmapC =
956  reinterpret_cast<size_t*>
957  (_S_mem_blocks[__diff].first) - 1;
958  __bitmapC -= (__displacement / size_t(__detail::bits_per_block));
959 
960  __detail::__bit_free(__bitmapC, __rotate);
961  size_t* __puse_count = reinterpret_cast<size_t*>
962  (_S_mem_blocks[__diff].first)
963  - (__detail::__num_bitmaps(_S_mem_blocks[__diff]) + 1);
964 
965  _GLIBCXX_DEBUG_ASSERT(*__puse_count != 0);
966 
967  --(*__puse_count);
968 
969  if (__builtin_expect(*__puse_count == 0, false))
970  {
971  _S_block_size /= 2;
972 
973  // We can safely remove this block.
974  // _Block_pair __bp = _S_mem_blocks[__diff];
975  this->_M_insert(__puse_count);
976  _S_mem_blocks.erase(_S_mem_blocks.begin() + __diff);
977 
978  // Reset the _S_last_request variable to reflect the
979  // erased block. We do this to protect future requests
980  // after the last block has been removed from a particular
981  // memory Chunk, which in turn has been returned to the
982  // free list, and hence had been erased from the vector,
983  // so the size of the vector gets reduced by 1.
984  if ((_Difference_type)_S_last_request._M_where() >= __diff--)
985  _S_last_request._M_reset(__diff);
986 
987  // If the Index into the vector of the region of memory
988  // that might hold the next address that will be passed to
989  // deallocated may have been invalidated due to the above
990  // erase procedure being called on the vector, hence we
991  // try to restore this invariant too.
992  if (_S_last_dealloc_index >= _S_mem_blocks.size())
993  {
994  _S_last_dealloc_index =(__diff != -1 ? __diff : 0);
995  _GLIBCXX_DEBUG_ASSERT(_S_last_dealloc_index >= 0);
996  }
997  }
998  }
999 
1000  public:
1001  bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1002  { }
1003 
1004  bitmap_allocator(const bitmap_allocator&) _GLIBCXX_USE_NOEXCEPT
1005  { }
1006 
1007  template<typename _Tp1>
1008  bitmap_allocator(const bitmap_allocator<_Tp1>&) _GLIBCXX_USE_NOEXCEPT
1009  { }
1010 
1011  ~bitmap_allocator() _GLIBCXX_USE_NOEXCEPT
1012  { }
1013 
1014  _GLIBCXX_NODISCARD pointer
1015  allocate(size_type __n)
1016  {
1017  if (__n > this->max_size())
1018  std::__throw_bad_alloc();
1019 
1020 #if __cpp_aligned_new
1021  if (alignof(value_type) > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
1022  {
1023  const size_type __b = __n * sizeof(value_type);
1024  std::align_val_t __al = std::align_val_t(alignof(value_type));
1025  return static_cast<pointer>(::operator new(__b, __al));
1026  }
1027 #endif
1028 
1029  if (__builtin_expect(__n == 1, true))
1030  return this->_M_allocate_single_object();
1031  else
1032  {
1033  const size_type __b = __n * sizeof(value_type);
1034  return reinterpret_cast<pointer>(::operator new(__b));
1035  }
1036  }
1037 
1038  _GLIBCXX_NODISCARD pointer
1039  allocate(size_type __n, typename bitmap_allocator<void>::const_pointer)
1040  { return allocate(__n); }
1041 
1042  void
1043  deallocate(pointer __p, size_type __n) throw()
1044  {
1045  if (__builtin_expect(__p != 0, true))
1046  {
1047 #if __cpp_aligned_new
1048  // Types with extended alignment are handled by operator delete.
1049  if (alignof(value_type) > __STDCPP_DEFAULT_NEW_ALIGNMENT__)
1050  {
1051  ::operator delete(__p, std::align_val_t(alignof(value_type)));
1052  return;
1053  }
1054 #endif
1055 
1056  if (__builtin_expect(__n == 1, true))
1057  this->_M_deallocate_single_object(__p);
1058  else
1059  ::operator delete(__p);
1060  }
1061  }
1062 
1063  pointer
1064  address(reference __r) const _GLIBCXX_NOEXCEPT
1065  { return std::__addressof(__r); }
1066 
1067  const_pointer
1068  address(const_reference __r) const _GLIBCXX_NOEXCEPT
1069  { return std::__addressof(__r); }
1070 
1071  size_type
1072  max_size() const _GLIBCXX_USE_NOEXCEPT
1073  { return size_type(-1) / sizeof(value_type); }
1074 
1075 #if __cplusplus >= 201103L
1076  template<typename _Up, typename... _Args>
1077  void
1078  construct(_Up* __p, _Args&&... __args)
1079  { ::new((void *)__p) _Up(std::forward<_Args>(__args)...); }
1080 
1081  template<typename _Up>
1082  void
1083  destroy(_Up* __p)
1084  { __p->~_Up(); }
1085 #else
1086  void
1087  construct(pointer __p, const_reference __data)
1088  { ::new((void *)__p) value_type(__data); }
1089 
1090  void
1091  destroy(pointer __p)
1092  { __p->~value_type(); }
1093 #endif
1094  };
1095 
1096  template<typename _Tp1, typename _Tp2>
1097  bool
1098  operator==(const bitmap_allocator<_Tp1>&,
1099  const bitmap_allocator<_Tp2>&) throw()
1100  { return true; }
1101 
1102 #if __cpp_impl_three_way_comparison < 201907L
1103  template<typename _Tp1, typename _Tp2>
1104  bool
1105  operator!=(const bitmap_allocator<_Tp1>&,
1106  const bitmap_allocator<_Tp2>&) throw()
1107  { return false; }
1108 #endif
1109 
1110  // Static member definitions.
1111  template<typename _Tp>
1112  typename bitmap_allocator<_Tp>::_BPVector
1113  bitmap_allocator<_Tp>::_S_mem_blocks;
1114 
1115  template<typename _Tp>
1116  std::size_t bitmap_allocator<_Tp>::_S_block_size
1117  = 2 * std::size_t(__detail::bits_per_block);
1118 
1119  template<typename _Tp>
1120  typename bitmap_allocator<_Tp>::_BPVector::size_type
1121  bitmap_allocator<_Tp>::_S_last_dealloc_index = 0;
1122 
1123  template<typename _Tp>
1124  __detail::_Bitmap_counter
1125  <typename bitmap_allocator<_Tp>::_Alloc_block*>
1126  bitmap_allocator<_Tp>::_S_last_request(_S_mem_blocks);
1127 
1128 #if defined __GTHREADS
1129  template<typename _Tp>
1130  typename bitmap_allocator<_Tp>::__mutex_type
1131  bitmap_allocator<_Tp>::_S_mut;
1132 #endif
1133 
1134 _GLIBCXX_END_NAMESPACE_VERSION
1135 } // namespace __gnu_cxx
1136 
1137 #endif
integral_constant
Definition: type_traits:62
void _M_deallocate_single_object(pointer __p)
Deallocates memory that belongs to a single object of size sizeof(_Tp).
constexpr _Tp * __addressof(_Tp &__r) noexcept
Same as C++11 std::addressof.
Definition: move.h:51
void _M_clear()
This function just clears the internal Free List, and gives back all the memory to the OS...
Definition: simd.h:281
Struct holding two objects of arbitrary type.
The class which acts as a predicate for applying the first-fit memory allocation policy for the bitma...
One of the comparison functors.
Definition: stl_function.h:365
The free list class for managing chunks of memory to be given to and returned by the bitmap_allocator...
GNU extensions for public use.
Bitmap Allocator, primary template.
_T1 first
The first member.
Definition: stl_pair.h:193
ISO C++ entities toplevel namespace is std.
std::size_t __num_bitmaps(_AddrPair __ap)
The number of Bit-maps pointed to by the address pair passed to the function.
void _M_insert(std::size_t *__addr)
This function returns the block of memory to the internal free list.
One of the comparison functors.
Definition: stl_function.h:362
void __bit_free(std::size_t *__pbmap, std::size_t __pos)
Mark a memory address as free by setting the corresponding bit in the bit-map.
pointer _M_allocate_single_object()
Allocates memory for a single object of size sizeof(_Tp).
__mini_vector<> is a stripped down version of the full-fledged std::vector<>.
std::size_t * _M_get(std::size_t __sz)
This function gets a block of memory of the specified size from the free list.
void __bit_allocate(std::size_t *__pbmap, std::size_t __pos)
Mark a memory address as allocated by re-setting the corresponding bit in the bit-map.
Scoped lock idiom.
Definition: concurrence.h:228
std::size_t __num_blocks(_AddrPair __ap)
The number of Blocks pointed to by the address pair passed to the function.
Exception possibly thrown by new.bad_alloc (or classes derived from it) is used to report allocation ...
Definition: new:55
#define _BALLOC_ALIGN_BYTES
The constant in the expression below is the alignment required in bytes.
std::size_t _Bit_scan_forward(std::size_t __num)
Generic Version of the bsf instruction.
The bitmap counter which acts as the bitmap manipulator, and manages the bit-manipulation functions a...
constexpr _ForwardIterator __rotate(_ForwardIterator __first, _ForwardIterator __middle, _ForwardIterator __last, forward_iterator_tag)
This is a helper function for the rotate algorithm.
Definition: stl_algo.h:1202